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Introduction to CFT

I Quantum field theory studies the expectation values of
products of quantum fields, Oi that transform under the
Poincare group of symmetries preserving length + angle in
spacetime.

I Conformal field theories (CFTs) consist of fields that
transform under the larger conformal group of
transformations that preserve only angle: Poincare + scalings
+ inversions.

I CFT plays a central role in the development of modern
physics, appearing in the study of phase transitions, string
theory, and dualities in quantum gravity.

I A CFT gives rise to correlation functions:

hO1(x1)O2(x2) . . .On(xn)i .

Conversely, these correlators give information about a CFT.
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Correlation Functions

I Conformal symmetry constrains the form of all two point
correlators

hO(x1)O(x2)i = CO
|x1 � x2|2�O

I and the three point correlators:

hO(x1)O(x2)O(x3)i = C123

|x12|�O |x23|�O |x31|�O

CO and C123 are constants depending only on the field O.
�O is called the scaling dimension of O.
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Crossing Symmetry: The Conformal Bootstrap

I Operator product expansion (OPE): The product of any
two conformal fields can be written as a series of “primary”
fields and their derivatives.

I Associativity condition on the 4-point functions:

h�(x1)�(x2)�(x3)�(x4)i = h�(x1)�(x2)�(x3)�(x4)i

I This constraint, together with the OPE allows us to determine
whether a given set of CFT data (field scaling dimensions,
etc.) can give rise to an actual CFT.
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The Space of 3D Ising-Like CFTs

I In 3D, operators of scaling dimension  3 are called relevant.

I The 3D ising model has two relevant operators: �, " with
scaling dimensions

�� = 0.5181489, �" = 1.412625

I Key Question:

Are there other 3D “Ising-like” CFTs?
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What do we mean by “Ising-like”

1. Two relevant operators (scaling dimensions < 3)

2. One is Z2-even, one is Z2-odd

I Key question rephrased (open problem):

What other values of (��,�") give rise to valid 3D CFTs?

I Conjectured answer:

Literally none.
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Method of Attack

I Expansions of functions corresponding to the associativity of
the correlators h����i , h""""i , h��""i give us the constraints
for the CFT.

I Essentially, we want to see whether a given series can equal
zero

I This leads a task in semidefinite programming, implemented
by David Simmons-Du�n’s ‘SDPB’
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Prior Results

Using just the associativity conditions on h����i1:

1No assumption on the number of relevant operators



Prior Results



Prior Results

Using mixed correlators2:

2Plotted from Aaron Hillman’s work last semester



Enforcing 3 point Symmetry

Using the package ‘cboot’ that makes use of a further symmetry in
the 3-point coe�cients ��✏� = ���✏:



Not very close to being global...



Scanning over 3-point Functions

Define tan ✓ = ���✏/�✏✏✏.
We now scan over all possible (��,�✏, ✓):



Scanning over 3-point Functions

Define tan ✓ = ���✏/�✏✏✏.
We now scan over all possible (��,�✏, ✓):



Scanning over 3-point Functions

Define tan ✓ = ���✏/�✏✏✏.
Projection to 2D:



Results

1. Wrote a wrapper to SDPB/cboot that allows for a flexible
user interface to check whether a given set of points could
contain CFTs.

2. Used the Yale HPC cluster to constrain the space of possible
CFTs using 3-point symmetry

3. Theta scan now working, and obtained results at ⇤ = 13

Next steps:

1. See how we can get results using much higher ⇤, e.g. ⇤ = 30.

2. Trace the size of the region excluded as a function of ⇤ ! 1
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